Docker Security

Dokument Initiator Donzyk, Oliver (Devops)
Dokumenten Status
Letzte Uberpriifung 31.07.2021 Donzyk, Oliver

@ weitere wichtige Seiten unter:

Content:

® Docker Security
® Kernel Exploits

Denial-of-Service-(DoS-)Angriffe
Container-Breakouts
Vergiftete Images
Verratene Geheimnisse
Least Privilege
Netzwerkzugriffe von Containern beschranken
Den Speicher begrenzen
Den CPU-Einsatz beschranken
Neustarts begrenzen
Zugriffe auf die Dateisysteme begrenzen
Nicht unterstitzte Treiber vermeiden
Ressourcenbeschrankungen (ulimits) anwenden
User Namespaces (userns-remap)
Auditing
Zukunftige und umgesetzte Features

® Seccomp

® AppArmor-Alternative SELinux

® Verschlisselte Ubertragung
Verwendung mdglicher Applikationen zur Sicherung, Priifung und Verwaltung von Applikationen, Containern und Plattform:
Diagramm: Docker Client, Daemon und Registry
Diagramm: Docker Workflow (vereinfacht)
Funktionales Diagramm: Docker Host / Server, Client und Registry
Diagramm Workflow Containers:
Diagramm vereinfachte Container Cluster / Orchestrierung:
Diagramm Docker DataCenter - DDC:
Security Checklist:

® General Configuration
Linux Hosts Specific Configuration
Docker daemon configuration
Docker daemon configuration files
Container Images and Build File
Container Runtime
Docker Security Operations

Docker Security

Kernel Exploits

Durch gemeinsame Kernel Nutzung des Host-Systems kann unter anderem ein Kernel-Panic-Fehler hervorgerufen werden.

Denial-of-Service-(DoS-)Angriffe

Container teilen sich ihre Kernel-Ressourcen des Hosts. Falls ein Container alle Ressourcen fiir sich beansprucht (Speicher, UIDs etc.) wirden alle
anderen Container Probleme bekommen.

Container-Breakouts

Ein Angreifer eines Containers sollte besten falls keinen Zugriff auf andere Container oder den Host zugreifen kénnen.

https://bw-wiki-01.bally-wulff.de/display/~o.donzyk@bally-wulff.de
https://bw-wiki-01.bally-wulff.de/display/~o.donzyk@bally-wulff.de

Da die Benutzer nicht Gber Namensraume getrennt sind, bekommen alle Prozesse, die aus dem Container ausbrechen, auf dem Host die gleichen
Privilegien wie im Container

Vergiftete Images

Herkunft und Sicherheit des Images sollten geprift sein!
Images aus nicht verifizierbaren Quellen bergen Gefahren das Sie mit Schadsoftware und sonstigen manipulativen Mechanismen bestiickt sein kénnen!
Genauso ist es wichtig das ausgefiihrte Images aktuell sind und keine Softwareversionen mit bekannten Sicherheitsliicken enthalten.

Docker Digests, Docker Content Trust - Ist Content Trust aktiviert, arbeitet die Docker Engine nur mit signierten Images und verweigert das Ausfuhren
anderer Images, deren Signaturen oder Digests nicht passen.

Um Content-Trust fir eine lokale Registry zu verwenden, musste zusatzlich noch einen Notary-Server (https://github.com/docker/notary) konfigurieren und
bereitgestellt werden.

Verratene Geheimnisse

Container die auf Datenbanken oder Services zugreifen bendtigen Passworter oder API Schliissel welche méglichst nicht in Images gelagert werden
sollten.
Hierzu gibt es sichere Auslagerungen in externe Konfigurationsdateien.

® Einsatz von Umgebungsvariablen
" Umgebungsvariablen sind fur alle Kind-Prozesse, docker inspect und verlinkte Container sichtbar. Keiner davon hat einen guten Grund,
diese Geheimnisse sehen zu missen.
Das ist einer der Griinde, warum man in der Version 1.10 von Docker das Link-Konzept veréndert hat und nun eben nicht mehr die ENV-
Variable in die gelinkten Container spiegelt.
= Die Umgebung wird haufig aus Protokollierungs- oder Debugging-Griinden gesichert. Das Risiko ist grof3, dass die Variablen in Debug-
Logs oder IssueTrackern einzusehen sind.
= Sie kdnnen nicht geldscht werden. Idealerweise wiirden wir das Geheimnis nach seinem Einsatz iberschreiben oder ausléschen, aber
bei Docker-Containern geht das nicht.
" FEine etwas bessere — wenn auch bei weitem nicht perfekte — Losung ist der Einsatz von Volumes, um Geheimnisse zu Uibergeben.
" Die wohl beste Losung ist der Einsatz eines Key/Value-Store, um Geheimnisse zu sichern und sie zur Laufzeit im Container auslesen zu kénnen.
Damit haben Sie Steuerungsmechanismen, die bei den vorigen Losungen nicht zur Verfiigung stehen — allerdings ist das Einrichten aufwendiger,
und Sie miissen dem Key/Value-Store vertrauen. zB: KeyWhiz, Vault, Crypt.

Least Privilege
Jeder Prozess und Container sollte nur mit so viel Zugriffsrechten und Ressourcen laufen, wie er gerade braucht, um seine Aufgaben zu erfiillen.

= sicherstellen, dass Prozesse in Containern nicht als root laufen, so dass das Ausnutzen von Sicherheitsliicken in einem Prozess dem Angreifer
keine root-Berechtigungen geben

" Dateisysteme schreibgeschitzt einsetzen, so dass Angreifer keine Daten Gberschreiben oder boswillige Skripten speichern kénnen

= die Kernel-Aufrufe, die ein Container ausfiihren kann, einschrénken, um die Angriffsoberflache zu verringern

= die Ressourcen begrenzen, die ein Container nutzen kann, um DoS-Angriffe zu verhindern, bei denen ein kompromittierter Container oder eine
Anwendung so viele Ressourcen auf braucht (wie zum Beispiel Speicher oder CPU-Zeit), dass der Host zum Halten kommt

Netzwerkzugriffe von Containern beschranken

Ein Container sollte in der Produktivumgebung nur die Ports 6ffnen, die er tatséchlich benétigt, und diese sollten auch nur fur die anderen Container
erreichbar sein, die sie brauchen.

Eine weitere Sicherheitsebene kann hier Giber Networks mit Traefik eingerichtet werden. So wird die Kommunikation der Container in jeweilige Stacks tber
eine oder mehre bridges Segmentiert.

Den Speicher begrenzen

Durch die Begrenzung des verfugbaren Speichers schiitzt man sich vor DoS Angriffen und Anwendungen mit Speicherlecks, die nach und nach den
Speicher auf dem Host auffressen (solche Anwendungen kénnen automatisch neu gestartet werden, um den Service beizubehalten).

Den CPU-Einsatz beschranken

Kann ein Angreifer einen Container — oder eine ganze Gruppe — dazu bringen, die CPU des Host vollstédndig aus zulasten, werden andere Container auf
dem Host nicht mehr arbeiten kdnnen, und man hat es mit einem DoS-Angriff zu tun.

Neustarts begrenzen

Stirbt ein Container immer wieder und wird dann neu gestartet, muss das System nicht unerheblich Zeit und Ressourcen aufwenden, was im Extremfall
auch zu einem DoS fuhren kann. Das lasst sich leicht mit der Neustart-Vorgabe on-failure statt always vermeiden.

https://github.com/docker/notary

Zugriffe auf die Dateisysteme begrenzen

Wenn verhindert wird, dass Angreifer in Dateien schreiben, stéren Sie eine ganze Reihe von Angriffen und machen das Leben von Hackern ganz
allgemein schwerer. Sie kdnnen kein Skript in eine Datei schreiben und lhre Anwendung dazu bringen, diese auszufiihren, oder kritische Daten oder
Konfigurationsdateien tiberschreiben.

Die allermeisten Anwendungen mussen aber in Dateien schreiben kénnen und sind nicht dazu in der Lage, in einer vollstandig schreibgeschitzten
Umgebung zu arbeiten. In solchen Fallen kdnnen Sie die Ordner und Dateien herausfinden, fur die die Anwendung schreibenden Zugriff benétigt, und nur
diese Dateien als Volumes mounten.

Nicht unterstitzte Treiber vermeiden

Der Einsatz diverser Features ist ein Sicherheitsrisiko, da sie nicht die gleiche Aufmerksamkeit und Anzahl an Updates erhalten wie andere Teile von
Docker. Das Gleiche gilt fur Treiber und Erweiterungen, die von Docker abhangen.

Insbesondere sollten Sie nicht den veralteten LXC-Execution-Treiber verwenden. Standardmagig ist er schon abgeschaltet!

Ressourcenbeschrankungen (ulimits) anwenden

Der Linux-Kernel definiert Ressourcenbeschrénkungen, die fir Prozesse gesetzt werden kdnnen — zum Beispiel die Anzahl der Kind-Prozesse, die sich
forken lassen, oder die Anzahl der zuldssigen offenen File-Deskriptoren. Diese lassen sich auch auf Docker-Container anwenden — entweder durch
Ubergabe des Flags --ulimit an docker run oder durch das Setzen containeriibergreifender Standards per --default-ulimit beim Start des Docker Daemon

Von besonderem Interesse sind die folgenden Werte: cpu, nofile, nproc

User Namespaces (userns-remap)

User Namespaces sind vor allem dann empfehlenswert, wenn Sie in lhren Containern als root -Benutzer arbeiten missen.
Docker stellt durch sogenannte Namespaces sicher, dass jeder Container eigene UIDs, GIDs und PIDs hat (also eigene User-, Gruppen- und
Prozessnummern) und somit die Prozesse des Hosts oder anderer Container nicht sieht.

Mount-Namespaces vermitteln jedem Container seine eigene Sichtweise auf das Dateisystem. Der Container kann auf3er seinem bereits beschriebenen
Overlay-Dateisystem und eventuell gemeinsam genutzten Volumes nicht auf andere Verzeichnisse des Host-Dateisystems zugreifen.

Schlief3lich erhélt jeder Container seinen eigenen Netzwerk-Stack.

https://docs.docker.com/engine/security/userns-remap/

Auditing

Um zu kontrollieren, dass Ihr System sauber und aktuell ist, und um ganz sicherzugehen, dass keine erfolgreichen Angriffe vorgenommen wurden, sind
regelmafige Audits oder Reviews fur lhre Container und Images eine sehr gute Idee. Bei einem Audit flir ein containerbasiertes System wird gepriift, dass
alle laufenden Container aktuelle Images nutzen und dass diese Images aktuelle und sichere Software einsetzen. Jeder Unterschied eines Containers zu
seinem Image, aus dem er erstellt wurde, sollte erkannt und kontrolliert werden. Zusatzlich sollten Audits andere Bereiche abdecken, die nicht spezifisch
fur Containersysteme sind, wie zum Beispiel das Prufen der Zugriffsprotokolle, der Dateiberechtigungen und der Datenintegritat. Wenn Audits weitgehend
automatisiert werden kénnen, ist es problemlos méglich, sie regelmafig laufen zu lassen, um Probleme so schnell wie mdglich erkennen zu kdnnen.

Zukunftige und umgesetzte Features

Seccomp

Das Prinzip ist simpel: Seccomp beschrénkt die erlaubten Systemaufrufe (Syscalls) auf das absolut notwendige Minimum.

Seccomp basiert auf dem Prinzip von Profilen: In einem solchen Profil legt der Administrator fest, auf welche Systemaufrufe ein Programm Zugriff hat. Das
Zielprogramm muss Seccomp unterstitzen, denn es muss das Profil, mit dem es assoziiert sein mochte, selbst auswahlen und durch den »seccomp()«-
Syscall setzen. Versucht ein Programm, das durch ein Seccomp-Profil eingeschrankt ist, einen im Profil nicht ausdrucklich erlaubten Syscall auszufihren,
schickt der Kernel des Hostbetriebssystems ihm kurzerhand das »SIGKILL«-Signal und beférdert es so ins Nirwana. De facto agiert die Seccomp-
Funktionalitét also als Erweiterung des schon beschriebenen Linux-Capability-Systems: Nicht alle Operationen, die man als Admin einem Docker-
Container verbieten mochte, lassen sich iber Capabilities abdecken — hier springt Seccomp in die Bresche. Noch eine gute Nachricht: Seit Version 1.10
beherrscht Docker das Setzen von Seccomp-Profilen auf Basis von einzelnen Containern. Das Standardprofil ist in (https://docs.docker.com/engine
/security/seccomp) ausgiebig erkléart, dort steht auch, welche Funktionen dieses Standardprofil blockiert

AppArmor-Alternative SELinux

Leider steht AppArmor nur unter wenigen Linux-Distributionen zur Verfiigung, insbesondere unter Ubuntu und (open)SUSE. Linux-Distributionen aus dem
Red-Hat-Umfeld, insbesondere also RHEL, Fedora, CentOS & Co., vertrauen dagegen mit SELinux auf eine andere Sicherheitstechnik.

https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/seccomp
https://docs.docker.com/engine/security/seccomp

Verschlusselte Ubertragung

Jegliche Kommunikation intern und extner sollte mit Zertifikaten verschlisselt stattfinden.
Hierzu bedarf es einem Zertifikat welches durch alle Systeme evaluiert und angewendet werden kann.
Sollte kein eigenes echtes Root-Zertifikat bereitstehen kann ggf. Letsencrypt Anwendung finden.

Zum Schluss sei angemerkt das Docker schnelllebig weiter entwickelt wird und sich hier bereits neue Losungen in der Planungsphase abzeichnen.

Die Absicherung fiir Systeme sollte auch aus mehreren Ebenen bestehen. Die Container werden zum Beispiel sehr wahrscheinlich in VMs laufen —
geschieht ein Container-Breakout, kann eine weitere Verteidigungsebene dafiir sorgen, dass Angreifer nicht auf den Host oder an Container kommen, die
anderen Benutzern gehéren. Das System sollte iberwacht werden, um Administratoren bei ungewéhnlichem Verhalten alarmieren zu kénnen. Firewalls
sollten den Netzwerkzugriff der Container begrenzen und damit die externe Angriffsoberflache minimieren.

Verwendung moglicher Applikationen zur Sicherung, Prifung und
Verwaltung von Applikationen, Containern und Plattform:

APTLY - Mirror
Jenkins

Selenium

Gitlab

Sonartype / Nexus
Sonarqube

Docker / Docker-Compose
Kubernetes

Traefik

Portainer

Graylog

DNS Cloud Domain
Letsencrypt
OpenVAS

Netdata

Graphana / Graphite
Rkhunter

Clair / falco / anchore / Docker-bench
logspout
watchtower

dockly

VSphere
Vagrant
Terraform
Ansible

Diagramm: Docker Client, Daemon und Registry

Host / Server Docker Registry

Docker Daemon

Docker Client |:> <—‘>
Docker pill

Docker Container 1 Image 1
Docker run
docker
Docker Container 2 image 2
Docker Container 3 Image 3
EEEE LN
Docker Container N Image N

Diagramm: Docker Workflow (vereinfacht)

docker [container] comrit docker [image] push

docker [container] run/
{create & start) Docker [image] pul

Dockerfile Enthalten imt Build-Directory

Docker [image] build
editiert

Basis-Image importiert durch From-Direktive im Dockerfile

Funktionales Diagramm: Docker Host / Server, Client und Registry

Client Host/ Server Docker Registry

Images
Docker Daemon / Docker Engine
Apache
Docker run Container Images
build
crate
push Tomeat
pull Docker Container 1

1
—I Apache I

Docker Container 3

Applikation X
MariaDB

f LDAP
Docker Container 2
J_ Tomeat

Docker Container N

Diagramm Workflow Containers:

Registy Events

Registry

Regtry 1 View

Sean
Vunerabity
Buid Pusn
! Auth

snkrs | . | [Fantend |
8
S ™
H

[smmmn [somswmmaron |

Forcess Scan Resul

v—
v
v

i Administrator

Cluster

Node

A d APl

APlor proxy

"t Contok-plane components Stk s Hontor
- Intercept/modify ine
control-plane taffic

Vsphere Vagrant

Node
Access via Kuelet API q Kubelet |

Pod
Container
host [Applicati - i
through vinerability or applcaton raffic
wiume

1

T
Exploit wlnerabiity

Diagramm vereinfachte Container Cluster / Orchestrierung:

Container Cluster/Orchestrierung

Cluster 3 Cluster n

Cluster 2

Cluster1

Physikalische Infrastruktur

Diagramm Docker DataCenter - DDC:

Security CheckKlist:

Item Must Beschreibung
have

1 General

Configu

ration

Ensure the] This test is just a note to remind you to consider hardening your host. Hardening usually involves setting up a firewall, locking down various services, setting up auditing
container host and logging, and implementing other security measures

has been

Hardened

Ensure that] Be care use the newest Version
the version of :

Docker is up to

date

4 Linux
Hosts
Specific
Configu
ration

10

11

12

13

Swap limit
support?

Ensure a
separate
partition for
containers has
been created

Ensure only
trusted users
are allowed to
control Docker
daemon

Ensure
auditing is
configured for
the Docker
daemon

Ensure
auditing is
configured for
Docker files
and directories

Docker
daemon
configur
ation

Ensure
network traffic
is restricted
between
containers on
the default
bridge

Ensure the
logging level is
set to ‘info’

Ensure Docker
is allowed to
make changes
to iptables

Auditing can generate large log files. You should ensure that these are rotated and archived periodically. A separate partition should also be created for audit logs
to avoid filling up any other critical partition
By default, Docker related files and directories are not audited

Docker Flags zB:
-m 128m --memory-swap 128m

Fir Docker-Compose zB:

depl oy:
resources:
limts:
cpus: '0.001'
menory: 50M

reservations:
cpus: '0.0001
menory: 20M

Priifen mit "free -mh"

= By default, /var/lib/docker is mounted under the / or /var partitions dependent on how the OS is configured

All Docker containers and their data and metadata are stored in the /var/lib/docker directory. By default, /var/lib/docker should be mounted under either the / or
Ivar partitions depending on how the Linux operating system in use is configured

Docker depends on /var/lib/docker as the default directory where all Docker related files, including the images, are stored. This directory could fill up quickly
causing both Docker and the host to become unusable. For this reason, you should create a separate partition (logical volume) for storing Docker files.

For new installations, you should create a separate partition for the /var/lib/docker mount point. For systems that have already been installed, you should use the

Logical Volume Manager (LVM) within Linux to create a new partition. !

sudo apt-get install auditd
sudo nano /etc/audit/audit.rules

Paste the following snippet at the bottom of the file, then save and exit the editor:

-w /usr/bin/docker -p wa

-w /var/lib/docker -p wa

-w /etc/docker -p wa

-w /lib/systend/ systeni docker.service -p wa
-w /1ib/systemd/ system docker.socket -p wa
-w /etc/defaul t/docker -p wa

-w /et c/docker/daenon.json -p wa

-w /usr/bin/docker-containerd -p wa

-w /usr/bin/docker-runc -p wa

sudo systemctl restart auditd

Ivarflib/docker
/etc/docker
docker.service
docker.socket
/etc/default/docker
Jetc/sysconfig/docker
/etc/docker/daemon.json
Jusr/bin/containerd
Jusr/shin/runc

You can restrict all inter-container communication and link specific containers together that require communication
you can create a custom network and only join containers that need to communicate to that custom network
inter-container communication is disabled: “icc": false or dockerd --icc=false

By default, all inter-container communication is allowed on the default network bridge. /¥

"log-level": "info"or dockerd --log-level="info"
By default, Docker daemon is set to log level of info.

The iptables firewall is used to set up, maintain, and inspect the tables of IP packet filter rules within the Linux kernel. The Docker daemon should be allowed to
make changes to the iptables ruleset

Do not run the Docker daemon with --iptables=false parameter !

The Docker daemon service requires iptables rules to be enabled before it starts. Any restarts of iptables during Docker daemon operation may result in losing
Docker-created rules. Adding iptables-persistent to your iptables install can mitigate
By default, iptables is set to true

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Ensure
insecure
registries are
not used

Ensure aufs
storage driver
is not used

Ensure TLS
authentication
for Docker
daemon is
configured

Ensure the
default ulimit is
configured
appropriately

Enable user
namespace
support

Ensure the
default cgroup
usage has
been confirmed

Ensure base
device size is
not changed
until needed

Ensure that
authorization
for Docker
client
commands is
enabled

Ensure
centralized
and remote
logging is
configured

Ensure live
restore is
enabled

Ensure
Userland
Proxy is
Disabled

Ensure that a
daemon-wide
custom
seccomp
profile is
applied if
appropriate

Ensure that
experimental
features are
not
implemented
in production

Ensure
containers are
restricted from
acquiring new
privileges

Docker
daemon
configur
ation
files

Docker considers a private registry either secure or insecure. By default, registries are considered secure

You should ensure that no insecure registries are in use '
By default, Docker assumes all registries except local ones are secure

Do not use aufs as the storage driver for your Docker instance

The aufs storage driver is the oldest storage driver used on Linux systems. It is based on a Linux kernel patch-set that is unlikely in future to be merged into the
main OS kernel. The aufs driver is also known to cause some serious kernel crashes. aufs has only legacy support within systems using Docker. Most
importantly, aufs is not a supported driver in many Linux distributions using latest Linux kernels.

Do not explicitly use aufs as storage driver. For example, do not start Docker daemon with the --storage-driver aufs flag.

By default, Docker uses devicemapper as the storage driver on most of the platforms. The default storage driver can vary based on your OS vendor. You should
use the storage driver that is recommended by your preferred vendor and which is in line with policy around the applications which are being deployed.

Bby default, Docker runs via a non-networked Unix socket and TLS must be enabled in order to have the Docker client and the daemon communicate securely
over HTTPS. TLS ensures authenticity of the registry endpoint and that traffic to/from registry is encrypted

--default-ulimit ulimit Default ulimits for containers (default [])

The best way to prevent privilege-escalation attacks from within a container is to configure your container’s applications to run as unprivileged users. For
containers whose processes must run as the root user within the container, you can re-map this user to a less-privileged user on the Docker host. The mapped
user is assigned a range of UIDs which function within the namespace as normal UIDs from 0 to 65536, but have no privileges on the host machine itself.

You can start dockerd with the --userns-remap flag or follow this procedure to configure the daemon using the daemon.json configuration file. The daemon.json
method is recommended

dockerd --userns-remap="testuser:testuser"

https://docs.docker.com/engine/security/userns-remap/

It is possible to attach to a particular cgroup when a container is instantiated. Confirming cgroup usage would ensure that containers are running in defined
cgroups.

System administrators typically define cgroups in which containers are supposed to run. If cgroups are not explicitly defined by the system administrator,
containers run in the docker cgroup by default.

At run time, it is possible to attach a container to a different cgroup other than the one originally defined. This usage should be monitored and confirmed, as by
attaching to a different cgroup, excess permissions and resources might be granted to the container and this can therefore prove to be a security risk

You should not use the --cgroup-parent option within the docker run command unless strictly required

Likewise, there is a default limit of 10 GB size set for the containers. This is the maximum size up to which a container can grow, and is defined by the parameter
‘Base Device Size'. Increasing the container size limit is possible, as long as its within the pool limit.

When this default limit for docker container size is increased in Docker, it will impact the size all newly created containers. It is also possible to increase the
storage pool size to above 100GB.

Docker socket is protected by requiring membership in the docker group so this can be safely ignored

By default, Docker uses the json-file driver, which writes JSON-formatted logs to a container-specific file on the host where the container is running

The local logging driver also writes logs to a local file, compressing them to save space on the disk

Docker also provides built-in drivers for forwarding logs to various endpoints

Regardless of which logging driver you choose, you can configure your container’s logging in either blocking or non-blocking delivery mode. The mode you
choose determines how the container prioritizes logging operations relative to its other tasks

By specifying "live-restore™: true in the daemon config, we allow containers to continue running when the Docker daemon is not. This improves container uptime
during updates of the host system and other stability issues.

The "userland-proxy": false line fixes this warning. This disables the docker-proxy userland process that by default handles forwarding host ports to containers,
and replaces it with iptables rules. If hairpin NAT is available, the userland proxy is not needed and should be disabled to reduce the attack surface of your host.

https://docs.docker.com/engine/security/seccomp/

By default, experimental flag is turned off. To see the experimental flag, check Docker version Experimental: false

The "no-new-privileges™: true line in the daemon config prevents privilege escalation from inside containers. This ensures that containers cannot gain new
privileges using setuid or setgid binaries.

https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/seccomp/

29

30

31

32

33

34

35

36

37

38

39

Ensure that
the docker.
service file
ownership is
set to root:root

Ensure that
docker.service
file
permissions
are
appropriately
set

Ensure that
docker.socket
file ownership
is set to root:
root

Ensure that
docker.socket
file
permissions
are set to 644
or more
restrictive

Ensure that
the /etc/docker
directory
ownership is
set to root:root

Ensure that /etc
/docker
directory
permissions
are setto 755
or more

Ensure that
registry
certificate file
ownership is
set to root:root

Ensure that
registry
certificate file
permissions
are set to 444
or more

Ensure that
TLSCA
certificate file
ownership is
set to root:root

Ensure that
TLSCA
certificate file
permissions
are set to 444
or more
restrictively

Ensure that
Docker server
certificate file
ownership is
set to root:root

You should verify that the docker.service file ownership and group ownership are correctly set to root.
The docker.service file contains sensitive parameters that may alter the behavior of the Docker daemon. It should therefore be individually and group owned by
the root user in order to ensure that it is not modified or corrupted by a less privileged user.

1. Find out the file location: systemctl show -p FragmentPath docker.service

2. If the file does not exist, this recommendation is not applicable. If the file does exist, you should execute the command below, including the correct file
path, in order to set the ownership and group ownership for the file to root.

For example, chown root:root /ust/lib/systemd/system/docker.service

You should verify that the docker.service file permissions are either set to 644 or to a more restrictive value.
The docker.service file contains sensitive parameters that may alter the behavior of the Docker daemon. It should therefore not be writable by any other user
other than root in order to ensure that it can not be modified by less privileged users.
1. Find out the file location: systemctl show -p FragmentPath docker.service
2. If the file does not exist, this recommendation is not applicable. If the file exists, execute the command below including the correct file path to set the file
permissions to 644.

For example, chmod 644 /usr/lib/systemd/system/docker.service

You should verify that the Docker socket file is owned by root and group owned by docker.

The Docker daemon runs as root. The default Unix socket therefore must be owned by root. If any other user or process owns this socket, it might be possible for
that non-privileged user or process to interact with the Docker daemon. Additionally, in this case a non-privileged user or process might be able to interact with
containers which is neither a secure nor desired behavior. Additionally, the Docker installer creates a Unix group called docker. You can add users to this group,
and in this case, those users would be able to read and write to the default Docker Unix socket. The membership of the docker group is tightly controlled by the
system administrator. However, ff any other group owns this socket, then it might be possible for members of that group to interact with the Docker daemon. Such
a group might not be as tightly controlled as the docker group. Again, this is not in line with good security practice. For these reason, the default Docker Unix
socket file should be owned by root and group owned by docker to maintain the integrity of the socket file.

Run the following command: chown root:docker /var/run/docker.sock

This sets the ownership to root and group ownership to docker for the default Docker socket file.

You should verify that the file permissions on the docker.socket file are correctly set to 644 or more restrictively
The docker.socket file contains sensitive parameters that may alter the behavior of the Docker remote API. It should therefore be writeable only by root in order to
ensure that it is not modified by less privileged users
1. Find out the file location: systemctl show -p FragmentPath docker.socket
2. If the file does not exist, this recommendation is not applicable.
If the file does exist, you should execute the command below, including the correct file path to set the file permissions to 644.
For example, chmod 644 /usr/lib/systemd/system/docker.socket

You should verify that the /etc/docker directory ownership and group ownership is correctly set to root.

The /etc/docker directory contains certificates and keys in addition to various other sensitive files. It should therefore be individual owned and group owned by root
in order to ensure that it can not be modified by less privileged users.

To resolve this issue, run the following command: chown root:root /etc/docker

This sets the ownership and group ownership for the directory to root

You should verify that the /etc/docker directory permissions are correctly set to 755 or more restrictively

The /etc/docker directory contains certificates and keys in addition to various sensitive files. It should therefore only be writeable by root to ensure that it can not
be modified by a less privileged user.

Run the following command: chmod 755 /etc/docker

This sets the permissions for the directory to 755

By default, the permissions for this directory are set to 755.

You should verify that all the registry certificate files, usually found under the /etc/docker/certs.d/<registry-name> directory, are individually owned and group
owned by root

The /etc/docker/certs.d/<registry-name> directory contains Docker registry certificates. These certificate files must be individually owned and group owned by root
to ensure that less privileged users are unable to modify the contents of the directory.

Execute the following command: chown root:root /etc/docker/certs.d/<registry-name>/*

This sets the individual ownership and group ownership for the registry certificate files to root

By default, the individual ownership and group ownership for registry certificate files is correctly set to root

You should verify that all the registry certificate files, usually found under /etc/docker/certs.d/<registry-name> directory, have permissions of 444 or are set more
restrictively.

The /etc/docker/certs.d/<registry-name> directory contains Docker registry certificates. These certificate files must have permissions of 444or more restrictive
permissions in order to ensure that unprivileged users do not have full access to them.

Run the following command: chmod 444 /etc/docker/certs.d/<registry-name>/*

This sets the permissions for the registry certificate files to 444.

By default, the permissions for registry certificate files might not be 444. The default file permissions are governed by the system or user specific umask values
which are defined within the operating system itself.

You should verify that the TLS CA certificate file, the file that is passed along with the --tlscacert parameter, is individually owned and group owned by root
The TLS CA certificate file should be protected from any tampering. It is used to authenticate the Docker server based on a given CA certificate. It must be
therefore be individually owned and group owned by root to ensure that it cannot be modified by less privileged users.

Run the following command: chown root:root <path to TLS CA certificate file>

This sets the individual ownership and group ownership for the TLS CA certificate file to root

By default, the ownership and group-ownership for TLS CA certificate file is correctly set to root

You should verify that the TLS CA certificate file, the file that is passed along with the --tlscacert parameter, has permissions of 444 or is set more restrictively.
The TLS CA certificate file should be protected from any tampering. It is used to authenticate the Docker server based on a given CA certificate. It must therefore
have permissions of 444, or more restrictive permissions to ensure that the file cannot be modified by a less privileged user.

Run the following command: chmod 444 <path to TLS CA certificate file>

This sets the file permissions on the TLS CA file to 444.

By default, the permissions for the TLS CA certificate file might not be 444. The default file permissions are governed by the operating system or user specific
umask values

You should verify that the Docker server certificate file, the file that is passed along with the --tiscert parameter, is individual owned and group owned by root
The Docker server certificate file should be protected from any tampering. It is used to authenticate the Docker server based on the given server certificate. It
must therefore be individually owned and group owned by root to prevent modification by less privileged users.

Run the following command: chown root:root <path to Docker server certificate file>

This sets the individual ownership and the group ownership for the Docker server certificate file to root.

By default, the ownership and group-ownership for Docker server certificate file is correctly set to root.

40

41

42

43

44

45

46

47

48

49

50

51

Ensure that
the Docker
server
certificate file
permissions
are set to 444
or more

Ensure that
the Docker
server
certificate key
file ownership
is set to root:
root

Ensure that
the Docker
server
certificate key
file
permissions
are set to 400

Ensure that
the Docker
socket file
ownership is
set to root:
docker

Ensure that
the Docker
socket file
permissions
are set to 660
or more
restrictively

Ensure that
the daemon.
json file
ownership is
set to root:root

Ensure that
daemon.json
file
permissions
are set to 644
or more
restrictive

Ensure that
the /etc/default
Idocker file
ownership is
set to root:root

Ensure that
the /etc
Isysconfig
/docker file
ownership is
set to root:root

Ensure that
the /etc
Isysconfig
Idocker file
permissions
are set to 644
or more
restrictively

Ensure that
the /etc/default
Idocker file
permissions
are set to 644
or more
restrictively

Contain
er
Images
and
Build
File

You should verify that the Docker server certificate file, the file that is passed along with the --tlscert parameter, has permissions of 444 or more restrictive
permissions.

The Docker server certificate file should be protected from any tampering. It is used to authenticate the Docker server based on the given server certificate. It
should therefore have permissions of 444 to prevent its modification.

Run the command below: chmod 444 <path to Docker server certificate file>

This sets the file permissions of the Docker server certificate file to 444.

By default, the permissions for the Docker server certificate file might not be 444. The default file permissions are governed by the operating system or user
specific umask values.

You should verify that the Docker server certificate key file, the file that is passed along with the --tiskey parameter, is individually owned and group owned by root
The Docker server certificate key file should be protected from any tampering or unneeded reads/writes. As it holds the private key for the Docker server
certificate, it must be individually owned and group owned by root to ensure that it cannot be accessed by less privileged users.

Run the following command: chown root:root <path to Docker server certificate key file>

This sets the individual ownership and group ownership for the Docker server certificate key file to root

You should verify that the Docker server certificate key file, the file that is passed along with the --tiskey parameter, has permissions of 400

The Docker server certificate key file should be protected from any tampering or unneeded reads. It holds the private key for the Docker server certificate. It must
therefore have permissions of 400 to ensure that the certificate key file is not modified

You should execute the following command: chmod 400 <path to Docker server certificate key file>

This sets the Docker server certificate key file permissions to 400

You should verify that the Docker socket file is owned by root and group owned by docker

The Docker daemon runs as root. The default Unix socket therefore must be owned by root. If any other user or process owns this socket, it might be possible for
that non-privileged user or process to interact with the Docker daemon. Additionally, in this case a non-privileged user or process might be able to interact with
containers which is neither a secure nor desired behavior. Additionally, the Docker installer creates a Unix group called docker. You can add users to this group,
and in this case, those users would be able to read and write to the default Docker Unix socket. The membership of the docker group is tightly controlled by the
system administrator. However, ff any other group owns this socket, then it might be possible for members of that group to interact with the Docker daemon. Such
a group might not be as tightly controlled as the docker group. Again, this is not in line with good security practice. For these reason, the default Docker Unix
socket file should be owned by root and group owned by docker to maintain the integrity of the socket file

Run the following command: chown root:docker /var/run/docker.sock

This sets the ownership to root and group ownership to docker for the default Docker socket file

You should verify that the Docker socket file has permissions of 660 or are configured more restrictively.

Only root and the members of the docker group should be allowed to read and write to the default Docker Unix socket. The Docker socket file should therefore
have permissions of 660 or more restrictive permissions.

Run the command chmod 660 /var/run/docker.sock

This sets the file permissions of the Docker socket file to 660

You should verify that the daemon.json file individual ownership and group ownership is correctly set to root.

The daemon.json file contains sensitive parameters that could alter the behavior of the docker daemon. It should therefore be owned and group owned by root to
ensure it can not be modified by less privileged users

Run chown root:root /etc/docker/daemon.json

This sets the ownership and group ownership for the file to root

Default: This file may not be present on the system, and in that case, this recommendation is not applicable

You should verify that the daemon.json file permissions are correctly set to 644 or more restrictively

The daemon.json file contains sensitive parameters that may alter the behavior of the docker daemon. Therefore it should be writeable only by root to ensure it is
not modified by less privileged users.

Run chmod 644 /etc/docker/daemon.json

This sets the file permissions for this file to 644.

You should verify that the /etc/default/docker file ownership and group-ownership is correctly set to root

The /etc/default/docker file contains sensitive parameters that may alter the behavior of the Docker daemon. It should therefore be individually owned and group
owned by root to ensure that it cannot be modified by less privileged users.

Execute the following command: chown root:root /etc/default/docker

This sets the ownership and group ownership of the file to root.

Default:This file may not be present on the system, and in this case, this recommendation is not applicable

You should verify that the /etc/sysconfig/docker file individual ownership and group ownership is correctly set to root.

The /etc/sysconfig/docker file contains sensitive parameters that may alter the behavior of the Docker daemon. It should therefore be individually owned and
group owned by root to ensure that it is not modified by less privileged users.

Run the following command: chown root:root /etc/sysconfig/docker

This sets the ownership and group ownership for the file to root.

Default:This file may not be present on the system, and in this case, this recommendation is not applicable

You should verify that the /etc/sysconfig/docker file permissions are correctly set to 644 or more restrictively.

The /etc/sysconfig/docker file contains sensitive parameters that may alter the behavior of the Docker daemon. It should therefore be writeable only by root in
order to ensure that it is not modified by less privileged users.

Run the following command: chmod 644 /etc/sysconfig/docker

This sets the file permissions for this file to 644.

Default:This file may not be present on the system, and in this case, this recommendation is not applicable

You should verify that the /etc/default/docker file permissions are correctly set to 644 or more restrictively

The /etc/default/docker file contains sensitive parameters that may alter the behavior of the Docker daemon. It should therefore be writeable only by root in order
to ensure that it is not modified by less privileged users.

Run the following command: chmod 644 /etc/default/docker

This sets the file permissions for this file to 644

Default:This file may not be present on the system, and in this case, this recommendation is not applicable

52

53

54

55

56

57

58

59

60

61

62

63

64

Ensure that a
user for the

container has
been created

Ensure that
containers use
only trusted
base images

Ensure that
unnecessary
packages are
not installed in
the container

Ensure images
are scanned
and rebuilt to
include
security
patches

Ensure
Content trust
for Docker is
Enabled

Ensure that
HEALTHCHEC
K instructions
have been
added to
container
images

Ensure update
instructions
are not use
alone in the
Dockerfile

Ensure setuid
and setgid
permissions
are removed

Ensure that
COPY is used
instead of ADD
in Dockerfiles

Ensure secrets
are not stored
in Dockerfiles

Ensure only
verified
packages are
are installed

Contain
er
Runtime

Ensure that, if
applicable, an
AppArmor
Profile is
enabled

Containers should run as a non-root user.

Itis good practice to run the container as a non-root user, where possible. This can be done either via the USER directive in the Dockerfile or through gosu or
similar where used as part of the CMD or ENTRYPOINT directives.

Ensure that the Dockerfile for each container image contains USER <username or |D>

In this case, the user name or ID refers to the user that was found in the container base image. If there is no specific user created in the container base image,
then make use of the useradd command to add a specific user before the USER instruction in the Dockerfile.

For example, add the below lines in the Dockerfile to create a user in the container: RUN useradd -d /home/username -m -s /bin/bash username USER username

Note: If there are users in the image that are not needed, you should consider deleting them. After deleting those users, commit the image and then generate new
instances of the containers. Alternatively, if it is not possible to set the USER directive in the Dockerfile, a script running as part of the CMD or ENTRYPOINT
sections of the Dockerfile should be used to ensure that the container process switches to a non-root user.

Running as a non-root user can present challenges where you wish to bind mount volumes from the underlying host. In this case, care should be taken to ensure
that the user running the contained process can read and write to the bound directory, according to their requirements.

By default, containers are run with root privileges and also run as the root user inside the container

Docker images might be based on open source Linux distributions, and bundle within them open source software and libraries. A recent state of open source
security research conducted by Snyk found that the top most popular docker images contain at least 30 vulnerabilities.

https://medium.com/@gdiener/how-to-build-a-smaller-docker-image-76779e18d48a

Use tools tool that scans your Docker images for security vulnerabilities

http://docs.docker.oeynet.com/engine/security/trust/content_trust/
export DOCKER_CONTENT_TRUST=1

You should add the HEALTHCHECK instruction to your Docker container images in order to ensure that health checks are executed against running containers
An important security control is that of availability. Adding the HEALTHCHECK instruction to your container image ensures that the Docker engine periodically
checks the running container instances against that instruction to ensure that containers are still operational. Based on the results of the health check, the Docker
engine could terminate containers which are not responding correctly, and instantiate new ones

You should follow the Docker documentation and rebuild your container images to include the HEALTHCHECK instruction

By default, HEALTHCHECK is not set

® https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

" https://docs.docker.com/engine/swarm/secrets/

= AppArmor is an effective and easy-to-use Linux application security system. It is available on some Linux distributions by default, for example, on Debian and
Ubuntu.

= AppArmor protects the Linux OS and applications from various threats by enforcing a security policy which is also known as an AppArmor profile. You can create
your own AppArmor profile for containers or use Docker’s default profile. Enabling this feature enforces security policies on containers as defined in the profile.

= |If AppArmor is applicable for your Linux OS, enable it.

1.

Verify AppArmor is installed.
2. Create or import a AppArmor profile for Docker containers.
3. Enable enforcement of the policy.
4. Start your Docker container using the customized AppArmor profile. For example:
docker run --interactive --tty --security-opt="apparmor:PROFILENAME"
ubuntu /bin/bash Alternatively, Docker’'s default AppArmor policy can be used.
® The container will have the security controls defined in the AppArmor profile. It should be noted that if the AppArmor profile is misconfigured, this may cause
issues with the operation of the container
= By default, the docker-default AppArmor profile is applied to running containers. This profile can be found at /etc/apparmor.d/docker

https://medium.com/@gdiener/how-to-build-a-smaller-docker-image-76779e18d48a
http://docs.docker.oeynet.com/engine/security/trust/content_trust/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/engine/swarm/secrets/

65

66

67

68

69

70

71

72

73

Ensure that, if
applicable,
SELinux
security
options are set

Ensure that
Linux kernel
capabilities are
restricted
within
containers

Ensure that
privileged
containers are
not used

Ensure
sensitive host
system
directories are
not mounted
on containers

Ensure sshd is
not run within
containers

Ensure
privileged
ports are not
mapped within
containers

Ensure that
only needed
ports are open
on the
container

Ensure that
the host's
network
namespace is
not shared

Ensure that
the memory
usage for
containers is
limited

SELinux is an effective and easy-to-use Linux application security system. It is available by default on some distributions such as Red Hat and Fedora
SELinux provides a Mandatory Access Control (MAC) system that greatly augments the default Discretionary Access Control (DAC) model. You can therefore
add an extra layer of safety to your containers by enabling SELinux on your Linux host

If SELinux is applicable for your Linux OS, you should use it.

. Set the SELinux State.
. Set the SELinux Policy.
. Create or import a SELinux policy template for Docker containers.
. Start Docker in daemon mode with SELinux enabled.
For example: docker daemon --selinux-enabled
5. Start your Docker container using the security options.
For example, docker run --interactive --tty --security-opt label=level:TopSecret centos /bin/bash
Any restrictions defined in the SELinux policy will be applied to your containers. It should be noted that if your SELinux policy is misconfigured, this may have an
impact on the correct operation of the affected containers
By default, no SELinux security options are applied on containers

NEANNE

By default, Docker starts containers with a restricted set of Linux kernel capabilities. This means that any process can be granted the required capabilities instead
of giving it root access. Using Linux kernel capabilities, processes in general do not need to run as the root user
Docker supports the addition and removal of capabilities. Remove all capabilities not required for the correct function of the container. Specifically, in the default
capability set provided by Docker, the NET_RAW capability should be removed if not explicitly required, as it can give an attacker with access to a container the
ability to create spoofed network traffic
= Execute the command docker run --cap-add={"Capability 1","Capability 2"} <Run arguments> <Container Image Name or ID> <Command> to add required
capabilities.
= Execute the command docker run --cap-drop={"Capability 1","Capability 2"} <Run arguments> <Container Image Name or ID> <Command> to remove
unneeded capabilities
= Alternatively, remove all the currently configured capabilities and then restore only the ones you specifically use: docker run --cap-drop=all --cap-add=
{"Capability 1","Capability 2"} <Run arguments> <Container Image Name or ID> <Command>
Restrictions on processes within a container are based on which Linux capabilities are in force. Removal of the NET_RAW capability prevents the container from
creating raw sockets which is good security practice under most circumstances, but may affect some networking utilities
By default, the capabilities below are applied to containers:

AUDIT_WRITE
CHOWN
DAC_OVERRIDE
FOWNER

FSETID

KILL

MKNOD
NET_BIND_SERVICE
NET_RAW

SETFCAP

SETGID

SETPCAP

SETUID
SYS_CHROOT

Using the --privileged flag provides all Linux kernel capabilities to the container to which it is applied and therefore overwrites the --cap-add and --cap-drop flags.
For this reason, ensure that it is not used
The --privileged flag provides all capabilities to the container to which it is applied, and also lifts all the limitations enforced by the device cgroup controller. As a
consequence this the container has most of the rights of the underlying host. This flag only exists to allow for specific use cases (for example running Docker
within Docker) and should not generally be used.

= Do not run containers with the --privileged flag. For example, do not start a container using the command docker run --interactive --tty --privileged centos

/bin/bash

= |f you start a container without the --privileged flag, it will not have excessive default capabilities

Default False

The TCP/IP port numbers below 1024are considered privileged ports. Normal users and processes are not allowed to use them for various security reasons.
Docker does, however allow a container port to be mapped to a privileged port.

By default, if the user does not specifically declare a container port to host port mapping, Docker automatically and correctly maps the container port to one
available in the 49153-65535 range on the host. Docker does, however, allow a container port to be mapped to a privileged port on the host if the user explicitly
declares it. This is because containers are executed with NET_BIND_SERVICE Linux kernel capability which does not restrict privileged port mapping. The
privileged ports receive and transmit various pieces of data which are security sensitive and allowing containers to use them is not in line with good security
practice

Do not map container ports to privileged host ports when starting a container. You should also ensure that there is no such container to host privileged port
mapping declarations in the Dockerfile

By default, mapping a container port to a privileged port on the host is allowed.

Note: There might be certain cases where you want to map privileged ports, because if you forbid it, then the corresponding application has to run outside of a
container.

For example: HTTP and HTTPS load balancers have to bind 80/tcp and 443/tcp respectively. Forbidding to map privileged ports effectively forbids from running
those in a container, and mandates using an external load balancer. In such cases, those containers instances should be marked as exceptions for this
recommendation.

When the networking mode on a container is set to --net=host, the container is not placed inside a separate network stack. Effectively, applying this option
instructs Docker to not containerize the container's networking. The consequence of this is that the container lives “outside” in the main Docker host and has full
access to its network interfaces

Selecting this option is potentially dangerous. It allows the container process to open reserved low numbered ports in the way that any other root process can. It
also allows the container to access network services such as D-bus on the Docker host. A container process could potentially carry out undesired actions, such as
shutting down the Docker host. This option should not be used unless there is a very specific reason for enabling it

You should not pass the —net=host option when starting any container.

By default, containers connect to the Docker bridge when starting and do not run in the context of the host's network stack.

https://docs.docker.com/config/containers/resource_constraints/

https://docs.docker.com/config/containers/resource_constraints/

74

75

76

7

78

79

Ensure that
CPU priority is
set
appropriately
on containers

Ensure that
the container's
root filesystem
is mounted as
read only

Ensure that
incoming
container
traffic is bound
to a specific
host interface

Ensure that
the ‘on-failure’
container
restart policy is
setto's'

Ensure that
the host's
process
namespace is
not shared

Ensure that
the host's IPC
namespace is
not shared

By default, all containers on a Docker host share resources equally. By using the resource management capabilities of the Docker host you can control the host
CPU resources that a container may consume.

By default, CPU time is divided between containers equally. If you wish to control available CPU resources amongst container instances, you can use the CPU
sharing feature. CPU sharing allows you to prioritize one container over others and prevents lower priority containers from absorbing CPU resources which may
be required by other processes. This ensures that high priority containers are able to claim the CPU runtime they require.

You should manage the CPU runtime between your containers dependent on their priority within your organization. To do so, start the container using the --cpu-
shares argument. For example, you could run a container as docker run --interactive --tty --cpu-shares 512 centos /bin/bash The container is started with CPU
shares of 50% of what other containers use. So if the other container has CPU shares of 80%, this container will have CPU shares of 40%. Every new container
will have 1024 shares of CPU by default. However, this value is shown as 0 if you run the command mentioned in the audit section

Alternatively:

[AENE

IS

. Navigate to the /sys/fs/cgroup/cpu/system.slice/ directory.
. Check your container instance ID using docker ps.
. Inside the above directory (in step 1), call a directory. For example: docker-<Instance ID>.scope or docker-

4acae729e8659c6be696ee35b2237cclfededd2672e9186434c5116elabfbed6.scope. Navigate to this directory.

. You will find a file named cpu.shares. Execute cat cpu.shares. This will always give you the CPU share value based on the system. Even if there are no CPU

shares configured using the -c or --cpu-shares argument in the docker run command, this file will have a value of 1024. If you set one containers CPU shares to
512 it will receive half of the CPU time compared to the other containers. So if you take 1024 as 100% you can then derive the number that you should set for
respective CPU shares. For example, use 512 if you want to set it to 50% and 256 if you want to set it 25%

If you do not correctly assign CPU thresholds, the container process may run out of resources and become unresponsive. If CPU resources on the host are not
constrained, CPU shares do not place any restrictions on individual resources

By default, all containers on a Docker host share their resources equally. No CPU shares are enforced

The container’s root filesystem should be treated as a ‘golden image’ by using Docker run’s --read-only option. This prevents any writes to the container’s root
filesystem at container runtime and enforces the principle of immutable infrastructure.

Enabling this option forces containers at runtime to explicitly define their data writing strategy to persist or not persist their data. This also reduces security attack
vectors since the container instance’s filesystem cannot be tampered with or written to unless it has explicit read-write permissions on its filesystem folder and
directories.

Add a --read-only flag at a container’s runtime to enforce the container’s root filesystem being mounted as read only. For example, docker run <Run arguments> --
read-only <Container Image Name or ID> <Command>

Enabling the --read-only option at a container’s runtime should be used by administrators to force a container's executable processes to only write container data
to explicit storage locations during its lifetime.

Examples of explicit storage locations during a container's runtime include, but are not limited to:

1. Using the --tmpfs option to mount a temporary file system for non-persistent data writes. docker run --interactive --tty --read-only --tmpfs "/run" --tmpfs "
/tmp" centos /bin/bash

2. Enabling Docker rw mounts at a container’s runtime to persist container data directly on the Docker host filesystem. For example, docker run --interactive --
tty --read-only -v /opt/app/data:/run/app/data:rw centos /bin/bash

3. Utilizing the Docker shared-storage volume plugin for Docker data volume to persist container data. For example, docker volume create -d convoy --opt
0=size=20GB my-named-volume docker run --interactive --tty --read-only -v my-named-volume:/run/app/data centos /bin/bash

4. Transmitting container data outside of the Docker controlled area during the container’s runtime for container data in order to ensure that it is persistent.

Examples include hosted databases, network file shares and APIs.
Enabling --read-only at container runtime may break some container OS packages if a data writing strategy is not defined. You should define what the container's
data should and should not persist at runtime in order to decide which strategy to use. Example: Enable use --tmpfs for temporary file writes to /tmp Use Docker
shared data volumes for persistent data writes
By default, a container has its root filesystem writeable, allowing all container processes to write files owned by the container’s actual runtime user

https://docs.docker.com/config/containers/container-networking/

By using the --restart flag in the docker run command you can specify a restart policy for how a container should or should not be restarted on exit. You should
choose the on-failure restart policy and limit the restart attempts to 5
If you indefinitely keep trying to start the container, it could possibly lead to a denial of service on the host. It could be an easy way to do a distributed denial of
service attack especially if you have many containers on the same host. Additionally, ignoring the exit status of the container and always attempting to restart the
container, leads to non-investigation of the root cause behind containers getting terminated. If a container gets terminated, you should investigate on the reason
behind it instead of just attempting to restart it indefinitely. You should use the on-failure restart policy to limit the number of container restarts to a maximum of 5
attempts

= |f you wish a container to be automatically restarted, use docker run --detach --restart=on-failure:5 nginx

= |f this option is set, a container will only attempt to restart itself 5 times
By default, containers are not configured with restart policies

The Process ID (PID) namespace isolates the process ID space, meaning that processes in different PID namespaces can have the same PID. This creates
process level isolation between the containers and the host.
PID namespace provides separation between processes. It prevents system processes from being visible, and allows process ids to be reused including PID 1. If
the host’s PID namespace is shared with containers, it would basically allow these to see all of the processes on the host system. This reduces the benefit of
process level isolation between the host and the containers. Under these circumstances a malicious user who has access to a container could get access to
processes on the host itself, manipulate them, and even be able to kill them. This could allow for the host itself being shut down, which could be extremely
serious, particularly in a multi-tenanted environment. You should not share the host's process namespace with the containers running on it
® You should not start a container with the --pid=host argument. For example, do not start a container with the command: docker run --interactive --tty --
pid=host centos /bin/bash
= Container processes cannot see processes on the host system. In certain circumstances, you may want your container to share the host's process
namespace. For example, you could build a container containing debugging tools such as strace or gdb, and want to use these tools when debugging
processes on the host. If this is desired, then share specific host processes using the -p switch. For example: docker run --pid=host rhel7 strace -p 1234
By default, all containers have the PID namespace enabled and the therefore the host's process namespace is not shared with its containers

IPC (POSIX/SysV IPC) namespace provides separation of named shared memory segments, semaphores and message queues. The IPC namespace on the
host should therefore not be shared with containers and should remain isolated
The IPC namespace provides separation of IPC between the host and containers. If the host's IPC namespace is shared with the container, it would allow
processes within the container to see all of IPC communications on the host system. This would remove the benefit of IPC level isolation between host and
containers. An attacker with access to a container could get access to the host at this level with major consequences. The IPC namespace should therefore not
be shared between the host and its containers
= Do not start a container with the --ipc=host argument. For example, do not start a container with the command docker run --interactive --tty --ipc=host
centos /bin/bash
®= Shared memory segments are used in order to accelerate interprocess communications, commonly in high-performance applications. If this type of
application is containerized into multiple containers, you might need to share the IPC namespace of the containers in order to achieve high performance.
Under these circumstances, you should still only share container specific IPC namespaces and not the host IPC namespace. A container's IPC
namespace can be shared with another container. For example, docker run --interactive --tty --ipc=container:e3a7ala97c58 centos /bin/bash
By default, all containers have their IPC namespace enabled and host IPC namespace is not shared with any container

http://data/run/app/data:rw
http://my-named-volume/run/app/data
https://docs.docker.com/config/containers/container-networking/

80

81

82

83

84

85

86

87

88

89

90

91

92

Ensure that
host devices
are not directly
exposed to
containers

Ensure that
the default
ulimit is
overwritten at
runtime if
needed

Ensure mount
propagation
mode is not
set to shared

Ensure that
the host's UTS
namespace is
not shared

Ensurethe
default
seccomp
profile is not
Disabled

Ensure that
docker exec
commands are
not used with
the privileged
option

Ensure that
docker exec
commands are
not used with
the user=root
option

Ensure that
cgroup usage
is confirmed

Ensure that
the container
is restricted
from acquiring
additional
privileges

Ensure that
container
health is
checked at
runtime

Ensure that
Docker
commands
always make
use of the
latest version
of their image

Ensure that
the PIDs
cgroup limit is
used

Ensure that
Docker's
default bridge
docker0 is not
used

https://docs.docker.com/engine/security/

https://docs.docker.com/engine/reference/commandline/dockerd/

https://docs.docker.com/engine/reference/run/

UTS namespaces provide isolation between two system identifiers: the hostname and the NIS domain name. It is used to set the hostname and the domain which
are visible to running processes in that namespace. Processes running within containers do not typically require to know either the hostname or the domain name.
The UTS namespace should therefore not be shared with the host
Sharing the UTS namespace with the host provides full permission for each container to change the hostname of the host. This is not in line with good security
practice and should not be permitted

® You should not start a container with the --uts=host argument. For example, do not start a container using the command docker run --rm --interactive --tty --

uts=host rhel7.2

By default, all containers have the UTS namespace enabled and the host UTS namespace is not shared with any containers

Seccomp filtering provides a means for a process to specify a filter for incoming system calls. The default Docker seccomp profile works on a whitelist basis and
allows for a large number of common system calls, whilst blocking all others. This filtering should not be disabled unless it causes a problem with your container
application usage
A large number of system calls are exposed to every userland process with many of them going unused for the entire lifetime of the process. Most of applications
do not need all these system calls and would therefore benefit from having a reduced set of available system calls. Having a reduced set of system calls reduces
the total kernel surface exposed to the application and thus improvises application security.

= By default, seccomp profiles are enabled. You do not need to do anything unless you want to modify and use a modified seccomp profile

= With Docker 1.10 and greater, the default seccomp profile blocks syscalls, regardless of --cap-add passed to the container. You should create your own

custom seccomp profile in such cases. You can also disable the default seccomp profile by passing --security-opt=seccomp:unconfined on docker run

Default: When you run a container, it uses the default profile unless you override it with the --security-opt option

https://docs.docker.com/engine/reference/commandline/exec/

https://docs.docker.com/engine/reference/commandline/exec/

It is possible to attach to a particular cgroup when a container is instantiated. Confirming cgroup usage would ensure that containers are running in defined
cgroups.
System administrators typically define cgroups in which containers are supposed to run. If cgroups are not explicitly defined by the system administrator,
containers run in the docker cgroup by default. At run time, it is possible to attach a container to a different cgroup other than the one originally defined. This
usage should be monitored and confirmed, as by attaching to a different cgroup, excess permissions and resources might be granted to the container and this can
therefore prove to be a security risk.

® You should not use the --cgroup-parent option within the docker run command unless strictly required.
By default, containers run under docker cgroup

You should restrict the container from acquiring additional privileges via SUID or SGID bits
A process can set the no_new_priv bit in the kernel and this persists across forks, clones and execve. The no_new_priv bit ensures that the process and its child
processes do not gain any additional privileges via SUID or SGID bits. This reduces the danger associated with many operations because the possibility of
subverting privileged binaries is lessened

= Start your container with the options docker run --rm -it --security-opt=no-new-privileges ubuntu bash

® The no_new_priv option prevents LSMs like SELinux from allowing processes to acquire new privileges
By default, new privileges are not restricted

If the container image does not have an HEALTHCHECK instruction defined, you should use the --health-cmd parameter at container runtime to check container
health
If the container image you are using does not have a pre-defined HEALTHCHECK instruction, use the --health-cmd parameter to check container health at
runtime. Based on the reported health status, remedial actions can be taken if necessary

® You should run the container using the --health-cmd parameter. For example, docker run -d --health-cmd="stat /etc/passwd || exit 1' nginx
By default, health checks are not carried out at container runtime

https://docs.docker.com/engine/reference/commandline/build/

You should use the --pids-limit flag at container runtime
Attackers could launch a fork bomb with a single command inside the container. This fork bomb could crash the entire system and would require a restart of the
host to make the system functional again. Using the PIDs cgroup parameter —pids-limit would prevent this kind of attack by restricting the number of forks that can
happen inside a container within a specified time frame

= Use --pids-limit flag with an appropriate value when launching the container. For example, docker run -it --pids-limit 100 <Image_ID>

In the above example, the number of processes allowed to run at any given time is set to 100. After a limit of 100 concurrently running processes is
reached, Docker would restrict any new process creation.
= Set the PIDs limit value as appropriate. Incorrect values might leave containers unusable
The Default value for --pids-limit is 0 which means there is no restriction on the number of forks. Note that the PIDs cgroup limit works only for kernel versions 4.3
and higher.

https://docs.docker.com/engine/reference/commandline/dockerd/

https://docs.docker.com/engine/security/
https://docs.docker.com/engine/reference/commandline/dockerd/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/commandline/exec/
https://docs.docker.com/engine/reference/commandline/exec/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/dockerd/

93

94

95

96

97

98

99

100

101

102

103

104

106

Ensure that
the host's user
namespaces
are not shared

Ensure that
the Docker
socket is not
mounted
inside any
containers

Docker
Security
Operati
ons

Ensure swarm
mode is not
Enabled, if not
needed

Ensure that
the minimum
number of
manager
nodes have
been created
in a swarm

Ensure that
swarm
services are
bound to a
specific host
interface

Ensure that all
Docker swarm
overlay
networks are
encrypted

Ensure that
Docker's
secret
management
commands are
used for
managing
secretsina
swarm cluster

Ensure that
swarm
manager is run
in auto-lock
mode

Ensure that
the swarm
manager auto-
lock key is
rotated
periodically

Ensure that
node
certificates are
rotated as
appropriate

Ensure that
CA certificates
are rotated as
appropriate

Ensure that
management
plane traffic is
separated from
data plane
traffic

You should not share the host's user namespaces with containers running on it
User namespaces ensure that a root process inside the container will be mapped to a non-root process outside the container. Sharing the user namespaces of
the host with the container does not therefore isolate users on the host from users in the containers
®= Do not share user namespaces between host and containers. For example, do not run the command docker run --rm -it --userns=host ubuntu bash
By default, the host user namespace is shared with containers unless user namespace support is enabled

The Docker socket docker.sock should not be mounted inside a container
If the Docker socket is mounted inside a container it could allow processes running within the container to execute Docker commands which would effectively
allow for full control of the host.
" You should ensure that no containers mount docker.sock as a volume.
By default, docker.sock is not mounted inside containers

https://docs.docker.com/engine/swarm/swarm-mode/

https://docs.docker.com/engine/swarm/admin_guide/

https://docs.docker.com/engine/swarm/services/

https://docs.docker.com/network/overlay/

https://docs.docker.com/engine/swarm/secrets/

https://docs.docker.com/engine/swarm/swarm_manager_locking/

https://docs.docker.com/engine/swarm/swarm_manager_locking/

https://kubernetes.io/docs/tasks/tis/manual-rotation-of-ca-certificates/

https://kubernetes.io/docs/tasks/tis/manual-rotation-of-ca-certificates/

use different systems

https://docs.docker.com/engine/swarm/swarm-mode/
https://docs.docker.com/engine/swarm/admin_guide/
https://docs.docker.com/engine/swarm/services/
https://docs.docker.com/network/overlay/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/swarm_manager_locking/
https://docs.docker.com/engine/swarm/swarm_manager_locking/
https://kubernetes.io/docs/tasks/tls/manual-rotation-of-ca-certificates/
https://kubernetes.io/docs/tasks/tls/manual-rotation-of-ca-certificates/

	Docker Security

